(1/x-5)+(1/x+5)=(2x+1)/(x^2-25)

Simple and best practice solution for (1/x-5)+(1/x+5)=(2x+1)/(x^2-25) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/x-5)+(1/x+5)=(2x+1)/(x^2-25) equation:


D( x )

x = 0

x^2-25 = 0

x = 0

x = 0

x^2-25 = 0

x^2-25 = 0

1*x^2 = 25 // : 1

x^2 = 25

x^2 = 25 // ^ 1/2

abs(x) = 5

x = 5 or x = -5

x in (-oo:-5) U (-5:0) U (0:5) U (5:+oo)

1/x+1/x-5+5 = (2*x+1)/(x^2-25) // - (2*x+1)/(x^2-25)

1/x-((2*x+1)/(x^2-25))+1/x-5+5 = 0

(-1*(2*x+1))/(x^2-25)+1/x+1/x-5+5 = 0

(-1*x*(2*x+1))/(x*(x^2-25))+(1*(x^2-25))/(x*(x^2-25))+(1*(x^2-25))/(x*(x^2-25))+(-5*x*(x^2-25))/(x*(x^2-25))+(5*x*(x^2-25))/(x*(x^2-25)) = 0

1*(x^2-25)-1*x*(2*x+1)+1*(x^2-25)-5*x*(x^2-25)+5*x*(x^2-25) = 0

5*x^3-5*x^3-x^2+x^2-x+125*x-125*x-25-25 = 0

5*x^3-5*x^3-x+125*x-125*x-50 = 0

5*x^3-5*x^3+124*x-125*x-50 = 0

-x-50 = 0

(-x-50)/(x*(x^2-25)) = 0

(-x-50)/(x*(x^2-25)) = 0 // * x*(x^2-25)

-x-50 = 0

-x-50 = 0 // + 50

-x = 50 // * -1

x = -50

x = -50

See similar equations:

| (3x+7/9)(3x-1/3) | | -6/7x=2.125 | | -8u-8=-5(u-2) | | 12x+13x-5x=-9x-25+x | | 10=6(1x-5)+2x | | 6y-3(y-1)+6= | | 2x-40+2.4x=360 | | -8(v+1)=-5v+16 | | 2x^2-3x=125 | | 21=-x/7 | | 6(-4-6n)=-240 | | 7b-(3a-8b)=0 | | 19-5a=-7-3(-2-5a) | | 3(2x-1)=4(x+5)-11 | | 13b+29=18b+19 | | 1/9x=12 | | 7/4-7/12x=4/3 | | 2x+18=-4(x-9) | | 18-w=-3(2w-1) | | (1/x-3)-(2/x+3)=1/(x-3)(x+3) | | 1/6(3x+2) | | 0.5x-x=0 | | 8x-60=4 | | g-0.22g-0.02g=881.6 | | -3(u-7)=4u-49 | | 3x+32-4x=1-8+3 | | 2x-(10+6)=5x-20 | | 7/4-11/12x=7/3 | | x-40=17 | | 6x-30=6 | | -18/-9 | | 7y+9=4(y+9) |

Equations solver categories